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Abstract. Research indicates that teachers play an active and important role in 
classrooms with AI tutors. Yet, our scientific understanding of the way teacher 
practices around AI tutors mediate student learning is far from complete.  In this 
paper, we investigate spatiotemporal factors of student-teacher interactions by 
analyzing student engagement and learning with an AI tutor ahead of teacher 
visits (defined as episodes of a teacher being in close physical proximity to a 
student) and immediately following teacher visits. To conduct such integrated, 
temporal analysis around the moments when teachers visit students, we collect 
fine-grained, time-synchronized data on teacher positions in the physical class-
room and student interactions with the AI tutor. Our case study in a K12 math 
classroom with a veteran math teacher provides some indications on factors that 
might affect a teacher’s decision to allocate their limited classroom time to their 
students and what effects these interactions have on students. For instance, 
teacher visits were associated more with students’ in-the-moment behavioral in-
dicators (e.g., idleness) than a broader, static measure of student needs such as 
low prior knowledge. While teacher visits were often associated with positive 
changes in student behavior afterward (e.g., decreased idleness), there could be a 
potential mismatch between students visited by the teacher and who may have 
needed it more at that time (e.g., students who were disengaged for much longer). 
Overall, our findings indicate that teacher visits may yield immediate benefits for 
students but also that it is challenging for teachers to meet all needs - suggesting 
the need for better tool support. 

Keywords: Spatial analytics, Temporality, Teaching, Student Engagement, Human-AI 
Partnership, Multimodality.  
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1 Introduction 

Previous studies suggest that teachers play an active role in supporting student learning 
with AI tutors [10,2]. With adaptive instruction and immediate feedback, it is often 
argued that AI tutors are designed to free up teachers’ time so they can focus on students 
who need their time the most [9]. Accordingly, teachers are observed to be highly en-
gaged in such AI-enabled classrooms, moving from one student to another providing 
individualized help [2] and socio-emotional support [11], and helping students get out 
of an unproductive rut [9]. Yet, our scientific understanding of teacher practices around 
AI tutors in classrooms and the ways in which they mediate student learning is limited 
[cf. 9,17]. Besides being interesting in its own right, this kind of understanding could 
be helpful in designing better tools that support teachers as they help students during 
AI-enabled classroom sessions, a focus within AIED research in recent years [9,13].  

1.1 Spatiotemporal Factors in Teacher Practices with AI Tutors 

To better understand teacher practices in classrooms with AI tutors, we need to go be-
yond student log data (an often-used source of data in AIED research) and explore the 
physical classroom where the student-teacher interaction is happening while students 
are learning with AI tutors [7]. In a previous study, Holstein and colleagues [10] high-
lighted the importance of analyzing spatial factors of student and teacher behaviors to 
understand the role of “out-of-software events” such as teachers’ help-giving in AI-
enabled classrooms. More broadly, research in education highlights the importance of 
studying teachers’ and students’ physical location and interaction in a classroom to un-
derstand teachers’ pedagogical practices and their impact on students [5,16]. More re-
cently, spatial pedagogy [14] - a framework on teacher positioning and movement in 
classrooms - has been used in learning analytics to better understand teachers’ spatial 
pedagogical approaches [15]. However, it is hard to borrow these insights as-is for AI-
enabled classrooms since the presence of the AI tutor drastically transforms the class-
room environment and its social structures [2]. For example, the teacher’s role shifts 
from that of a lecturer at the front of the class to a coach working with students indi-
vidually in their close proximity [2,9].  

Due to the often one-to-one nature of teachers’ individualized attention to students 
in AI-enabled classrooms [2], we focus our spatial analysis on teachers’ close physical 
proximity to individual students. We use the term teacher visits to denote shorter or 
longer episodes where the teacher stays close to the same student (see illustration in 
Figure 1; left). Teacher visits to students in AI-enabled classrooms could serve several 
purposes, such as monitoring, help-giving, motivational support, or simple reassurance. 
Teachers may visit an individual student or a small group of students after observing 
them from afar or while monitoring them routinely. Often, these visits help them gather 
additional information to improve their sensemaking and interpretation of noteworthy 
events (aka shaping [17]). Some teacher visits may involve specific intervention (e.g., 
conceptual guidance, socio-emotional support), either proactively based on what they 
notice or find out through talking to students directly, or after being prompted by a 
student’s request for help (e.g., by raising their hand). While teacher visits have been 
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reported to be positively related to learning and engagement in traditional classroom 
settings [6], they have not been studied thoroughly in human-AI hybrid teaching. One 
notable exception is a study by Holstein et al. [10] which collected manual observations 
of teacher visits and found a positive effect of teacher monitoring on student learning.  

While exploring the spatial dimension of student-teacher interactions in classrooms 
with AI tutors seems promising, we argue that it is necessary to further contextualize 
the role of teacher visits by juxtaposing it with student learning and engagement hap-
pening in the AI tutor just prior to and just after each visit. That is, instead of aggregat-
ing measures of students’ learning or engagement, we look at change (e.g., in idleness 
or struggle [12]) from before to after a teacher visit. Doing so enables us to explore 
factors that may correspond to a teacher’s choice to visit a given student at a given point 
in time, and what change each teacher visit may bring for the visited student. This quan-
titative spatiotemporal lens complements earlier qualitative explorations of teacher 
practices using a replay tool [10].  

1.2 Research Questions and Hypotheses 

Prior interviews of teachers in AI-enabled classrooms (e.g., [10]) help us identify two 
key factors that may help determine a teacher’s choice of the student to visit: 1) teach-
ers’ prior knowledge about student abilities and behavioral tendency, and 2) their per-
ception of student needs while observing the class and monitoring student work on the 
students’ computer screens. For our analysis, we translate these into two types of prox-
ies: 1) a broader, static measure of student need for teacher support such as low prior 
knowledge, and 2) students’ in-the-moment struggle and disengagement while learning 
with an AI tutor. Determining students’ in-the-moment needs by direct observation may 
be harder for teachers in classrooms with AI tutors since there is a gap between what 
the teacher can perceive in the physical classroom and what their students do behind 
the screens with the AI tutor [9]. Certain student disengagement behaviors may be more 
overt (e.g., being idle) than others (e.g., misusing the tutor) for teachers’ direct obser-
vation. A previous qualitative analysis showed that despite wanting to pay attention to 
students who are off-task, teachers overlooked students who spent greater time off-task 
[10]. Also, more so than in traditional classrooms, students are likely to work on diver-
gent activities in the AI tutor and have different needs for teacher conceptual guidance 
while struggling, which makes us ask if there are differences in the effectiveness of 
teacher intervention based on student needs. Lastly, since teacher time is limited, we 
also expect teachers’ decisions on who they will visit to depend on what they perceive 
a student's need is relative to other students' needs at a given time. These motivations 
translate to the following research questions and hypotheses:  
RQ1. What factors about student learning and engagement with AI tutors relate to a 
teacher’s choice of students they visit? 
H1: Teacher visits are related to broader, static measures of student need for teacher 

support (i.e., low prior knowledge).  
H2a: Teacher visits are related to students’ in-the-moment needs while learning with 

the AI tutor, that is, students who are currently struggling or disengaged (i.e., being 
idle, misusing the tutor).  

H2b: Teacher prioritizes students who have been struggling or disengaged the longest. 
RQ2. How do teacher visits relate to student learning and engagement with AI tutors? 
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H3: Teacher visits are associated with less struggle or disengagement after the visit has 
taken place, compared to before. 

H4: Teacher visits positively relate to learning, as measured by in-tutor performance 
and out-of-tutor knowledge tests. 
Answering these questions could generate insights on analytics that could aid teach-

ers while co-orchestrating their classrooms with AI tutors and generate scientific 
knowledge about effective teaching practices that, in turn, can support teacher learning 
and reflections. To enable such investigations, we need time-synchronized data about 
teachers’ visits and student interaction with the AI tutor. In this work, we use position 
sensors to automatically record teachers’ positions in the classroom and algorithmically 
infer visits (with reasonable albeit imperfect accuracy; [8]). We detail our methodology 
in the next section. Then, we present the findings from a case study in an authentic 
setting (i.e., a K12 math classroom using an AI tutor), addressing the research questions 
above. Lastly, we discuss the methodological and empirical contributions of this work 
on understanding teacher practices in supporting student learning with AI tutors.  

2 Methods 

2.1 Case Study Context 

For the duration of three days in Summer 2022, we collected teacher position and stu-
dent tutor log data in a public school in the United States. The participants were eighty-
five 7th graders across five different classes (aka Periods 1-5), all taught by the same 
mathematics teacher. At the school, in 2022, 45.9% of all students were categorized as 
“Below Basic” for their performance on the end-of-course test on Algebra 1 [3]. The 
teacher who participated in the study was already familiar with the capabilities of an AI 
tutor due to prior experience participating in similar studies. They had been teaching 
mathematics at the same school for 16 years at the time of this study.  

During their regular math class time (for approximately 20 minutes each day), all 
students used Lynnette, an AI tutor designed for middle school algebra (Figure 1; cen-
ter). In this tutor, students solve equation problems using interactive scaffolding includ-
ing step-by-step feedback and next-step hints. All students in the study were assigned 
the same set and sequence of four problems across 12 problem levels (48 problems in 
total), which started from basic equations and then gradually increased in complexity. 
Before using the tutor, students worked on a web-based pretest on conceptual and pro-
cedural knowledge of algebra. Then, as a post-test, students worked on an isomorphic 
version of the test after three days of using the tutor. We used two forms, counterbal-
anced across pre- and post-test so that half the students got the one form as pre-test and 
the other as post-test, whereas for the other students it was the other way around. The 
tests contained conceptual items that tested students’ conceptual reasoning on problem-
solving in algebra [1] and procedural items that asked students to solve algebra prob-
lems similar to the ones they practiced in the tutor. 

We used Pozyx’s UWB (ultrawide-band)-based position sensors to collect the real-
time X-Y coordinates of the teacher in the classroom. The positioning system estimates 
a person’s real-time position based on the signal transmitted by UWB tags in a lanyard 
worn around their neck (Figure 1; right) to six anchors (mounted on tripods) along the 
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periphery of the classroom. The positioning system treats the entire classroom as a 2-D 
coordinate system. Once activated, it samples teacher positions at each second. Next, 
we measured static coordinates for each student’s desk which were mapped to their 
student IDs in the AI tutor. Any changes to the student seating (a very rare occurrence 
in this case study) were recorded, so as to allow for accurate tracking of teacher posi-
tions in relation to students in the classroom. After time-synchronizing position data 
with tutor log data for each student, we were able to identify what the student was doing 
when the teacher was around them. We also measured the static coordinates of all the 
major objects in the classroom, including the teacher’s desk, blackboard, window, and 
door. These data were used to create visualizations for follow-up interviews with the 
teacher participating in this study.   

 
Fig. 1. An illustrative instance of a teacher visit (left; image credit: Mathia); An example problem 
in Lynnette, the AI tutor used in the study(center); Pozyx tag in a lanyard (right; image credit: 
pozyx.io)  

2.2 Teacher Visits in the Temporal Context of Student Learning 

Using the teacher’s position data and students’ seating coordinates, we infer teacher 
visits to a particular student through a stop detection algorithm. We extended the quan-
titative definition of stopping [15] proposed by adjusting the algorithm parameters to 
the spatial context of a K-12 classroom (smaller and more densely populated than the 
open learning spaces from previous studies) and the teaching context of interest (teacher 
stopping close to a student for individualized attention). The algorithm marks a teacher 
visit when the teacher’s X-Y coordinates are within a small area for a chosen duration 
of time, d or longer. The small area is defined by a circular moving window with the 
teacher coordinates' centroid as the center and a chosen radius, r. Unlike previous stud-
ies that set these two parameters (r and d) ad hoc or using a heuristic, we chose to 
compute a more accurate combination of parameters with respect to human-coded train-
ing data of teacher visits collected in this study. To determine the final set of parame-
ters, we maximized visit recall to 0.17 while constraining the parameter search space 
during grid search to a precision of at least 0.2, which was more generalizable than 
unbounded maximization of precision and recall based on cross-validation (see [8] for 
more details). We also added new logic to detect the student that the teacher is visiting. 
We define another parameter called range (rng). Students with a Euclidean distance 
smaller than rng to the centroid of the detected stop are marked as visited by the teacher. 
The final set of optimal parameters chosen from this procedure are d = 21s, r = 600mm 
(approx. 2 ft), and rng = 700mm (approx. 2.3ft). On average, the teacher visited a stu-
dent once (SD = 2.1) for an average duration of 36 seconds (SD = 77.6s). 
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Next, we computed the frequency of machine-predicted disengagement measures 
(i.e., idleness, misuse) and student struggle from AI tutor log data based on models 
developed in [9]. The models classify the presence of idleness at a threshold of 2 mins, 
struggle at 25 s (operationalized as slow skill mastery), and misuse at 25 s (operation-
alized as either hint abuse or rapid sequences of attempts). For each student, each tutor 
interaction is annotated with indicator variables representing the presence or absence 
of idleness, tutor misuse, and struggle. These variables can then be aggregated within 
time windows to compute the percentage of interactions with each behavior. For exam-
ple, one student may show, on average, idleness at every 10th interaction (0.1) while 
another student at every 5th (0.2). We similarly aggregate in-system performance 
measures of learning (i.e., correctness and the average number of errors per problem 
step) for each student. To investigate the association of teacher visit timing with in-the-
moment student needs (i.e., disengagement and struggle), we compare the frequency of 
these behaviors recorded closer to an upcoming visit (pre-visit) to those closer to a past 
visit (post-visit). We also created a more granular classification, further splitting up pre- 
and post-visit interactions. To avoid post-visit interactions overlapping with pre-visit 
interactions of the next upcoming visit, the more granular classification first assigns 
each classification a pre- or post-visit class based on whether it is closer to an upcoming 
or past visit and then classifies its proximity to the closest visit. Specifically, we sample 
the 50% and 25% closest tutor interactions ahead of teacher visits (closer than 265s and 
123s, respectively) and the 50% furthest pre-visit interactions (further away than 265s). 
We do the same for post-visit interactions with the 25% and 50% closest interactions 
being classified at 117s and 284s, respectively. We compare these frequencies to a 
baseline subset of students the teacher never visited (see [3] for code and data).  

3 Results 

Our analysis was driven by the two research questions presented earlier (see Section 
1.2). First (RQ1), we explore factors that may be related to the teacher’s choice of stu-
dents to visit at a given time. Second (RQ2), we investigate the associations between 
teacher visits and student learning and engagement with the AI tutor. 

3.1 RQ1: Factors associated with teacher’s choice of students to visit 

We hypothesized that the teacher visits are related to both a broader, static measures of 
student needs such as low prior knowledge (H1) and in-the-moment behavioral indica-
tors from their interaction with the AI tutor (i.e., struggle or disengagement; H2a). We 
also hypothesized that teachers would additionally prioritize students that struggled or 
were disengaged the longest relative to other students (H2b). 

We find H1 to be not supported by our correlation analysis. Averaging students’ 
scores across procedural and conceptual items on  the pre-test, we find that students' 
prior knowledge was uncorrelated to whether the teacher visited them (r(48) = -0.22 [-
0.47, 0.06], p = .118), the number of visits they received (r(48) = -0.03 [-0.31, 0.25], p 
= .838) and the total length of the teacher visits  (r(48) = -0.01 [-0.28, 0.28], p = .990). 
These findings are based on 50 students instead of 68, as 18 students in the sample were 
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missing test scores. However, we find differences based on the timing of teacher visits 
concerning students' prior knowledge, as we will elaborate on in our results for H4. 

 
Fig. 2. Frequency of the presence of disengagement and struggle at any given tutor interaction 
before and after teacher visits per period with students who were never visited as a baseline. 
Standard error bars are excluded as they are too small to be meaningfully visible.  

We find partial support for H2a as there were differential associations with our three 
behavioral indicators. In the 20-minute sessions, on average, students were idle for 50.5 
seconds (SD = 164.3s), struggled for 29.4 seconds (SD = 123.4s), and misused the sys-
tem for 22.1 seconds (SD = 74.2s). The data are shown in Figure 2, separately for each 
of the five classes. We compare the struggle and disengagement rates of students the 
teacher never visited with students’ behavior before a visit. The hypothesis would be 
confirmed if the pre-visit value is higher than the not-visited value. In three out of five 
classrooms, the teacher tended to allocate visits to students with higher idleness and 
tutor misuse. By contrast, in three out of five classrooms, the struggle rate was higher 
in students whom the teacher never visited compared to those who were visited. We 
note that these comparisons are between individual students, with students that were 
never visited making up a minority of students (N = 25; 29.07%). Therefore, as an 
additional way of testing H2a, we conduct additional, one-sided binomial tests. We 
compare whether students were more likely to show struggle and disengagement right 
before a teacher visit (recorded as their last tutor interaction before a teacher visit) than 
the behavioral rates across the whole learning session. We find that, only for idleness, 
the behavioral frequency was significantly high right before visits (p = 0.23, CI95% = 
[0.17, 0.29] compared to a baseline of p = 0.14]. We learned from a follow-up interview 
with the teacher that different periods have varying characteristics, which might explain 
the period-level difference shown in Figure 2. According to the teacher, students in 
Period 1 are not highly-motivated needing them to “stand beside [students] to keep 
them motivated and working”; Period 3 has most IEP (Individualized Education Pro-
gram) students that they “quickly figured out the hint strategy and misused the system”; 
Period 5 is the honors class that is “intrinsically motivated.” 

Moving on to H2b, we find no indications that the teacher preferentially visited stu-
dents who exhibited struggle and disengagement earliest in scenarios where multiple 
students exhibited struggle and disengagement simultaneously. We find that only for 
14% of visits, the teacher visited a student who showed the longest (i.e., least recent) 
period of struggle or disengagement (p = 0.14, CI95% = [0.09, 0.20]), including 
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behavioral sequences up to 30 minutes ahead of a visit. There were no significant dif-
ferences regarding this finding among the three behavioral dimensions across class-
rooms. Thus, H2b is not confirmed in our data. 

3.2 RQ2: Teacher visit associations with student engagement and learning 

To test H3, we compare the struggle and disengagement rates of students before teacher 
visits to after (Figure 2). H3 would be confirmed if the struggle/disengagement is lower 
post-visit than pre-visit. In all five periods, idleness was significantly lower after a 
teacher visit. Similarly, tutor misuse, except for Period 2, was significantly lower after 
a teacher visit. Notably, struggle was lower after teacher visits in all classes except 
Period 2. Taken together with findings for H2a and H2b, we find that tutor idleness was 
most robustly associated with the timing of teacher visits (increasing before and de-
creasing after visits). In line with teachers visits being related to student idlenss, we 
estimate that per additional SD (i.e., 3.96 mins) of time students spend in the AI tutor 
without being re-visited by the teacher, the odds of showing idleness in the tutor ap-
proximately halves (β = -0.04, OR = 0.55, CI95% = [0.47, 0.64], p < .001). 
 Given heterogeneous associations of our struggle and disengagement measures with 
teacher visits, we ask which indicators had the strongest association with teacher visits. 
To answer this question, we calculate the aggregated mean difference between struggle 
and disengagement metrics before and after teacher visits broken out by period. Given 
that differences may be larger or smaller depending on how often the behavior occurs 
generally, we standardize this difference by dividing it by the behavioral frequency in 
interactions ahead of visits. We find that idleness had the largest standardized change, 
with idleness being between 37.4% to 97.3% less frequent after than before visits. 
Averaged by period, this reduction was 59.6%. Struggle had the second largest change; 
it was reduced by an average of 21.5% (although for period 2, the struggle was increa-
sed by 164.0%). Misuse showed an average reduction of 0.6%, ranging from a reduc-
tion of 96.3% to an increase of 261.0%. Thus, overall H3 is confirmed for idleness and 
struggle but not for misuse. 

We test associations of teacher visits with student learning in the AI tutor (H4). We 
do this by associating teacher visits with in-system performance and learning gain on 
out-of-tutor tests. We begin by reporting relations between teacher visits and the two 
measures of in-system performance, correctness of individual student responses in the 
tutor and the average number of attempts per step. We compare logistic regression mod-
els via likelihood-ratio tests to investigate whether the correctness of students’ first at-
tempt at each step is significantly different pre- and post-visits (as operationalized via 
our time binning described in Section 2.2). We compare a model featuring an indicator 
variable representing whether the given attempt is the student’s first attempt at the step 
with a model additionally featuring teacher visit timing represented through the time 
binning variable. We find that adding teacher visit timing significantly improved model 
fit (χ2(6) = 41.58, p < .001). In addition, adding prior knowledge (measured as pre-test 
score) as an additive effect (χ2(1) = 541.21, p < .001) and in interaction with teacher 
visit timing (χ2(6) = 11.29, p = .080) further improved model fit. We follow a similar 
procedure using Poisson count models inferring the number of attempts at a given step. 
Here, a model with just an intercept served as a baseline. Adding teacher visit timing 
(χ2(1) = 2541.90, p < .001), prior knowledge (χ2(1) = 5781.50, p < .001), and the 
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interaction of both (χ2(1) = 263.20, p < .001), significantly improved model fit. Like 
before, we omitted 18 cases due to missing test scores in this part of the analysis. Taken 
together, these findings highlight the utility of the relative timing of teacher visits in 
student in-tutor correctness, although the association was not uniformly positive, as 
assumed by H4, visualized in Figure 3. 

 

 
Fig. 3. Average correctness and the number of attempts per problem step broken out by the rela-
tive timing of tutor interactions with respect to teacher visits and whether students exhibited an 
above-median prior knowledge in the pre-test including 2 SE bars. Observations to the right of 
the dashed line designate aggregations of data points closer to past than upcoming visits. 

Based on Figure 3, we find two notable patterns. First, while all visited students 
exhibited decreasing correctness before teacher visits, students with high prior 
knowledge continuously increased their correctness at steps after a teacher visit. On the 
other hand, low prior knowledge students only had correctness improvements after 
teacher visits for around two minutes before falling back in correctness, except after 
around five minutes if the teacher did not revisit them. Second, high prior knowledge 
students only exhibited an increased number of attempts per step two minutes ahead of 
a teacher visit. In comparison, students with low prior knowledge already exhibited that 
behavior more than four minutes before a visit. In other words, students with high prior 
knowledge were visited by the teacher earlier after their number of attempts per step 
started to rise. 

Finally, to continue our test of H4, we investigate the association of teacher visits, 
that is, their number and length, with learning as measured by pre/post tests. Including 
the length of visit in this analysis was motivated by observing considerable variance in 
the duration of teacher visits (M = 36.85 s, SD = 18.53 s). Given heterogeneous asso-
ciations between teacher visits and in-tutor performance as displayed in Figure 3, we e 
select a set of control variables through an AIC-based backward search for Gaussian 
regression models that predict pre/post procedural and conceptual learning gains, to 
isolate the effects of the number and length of visits. Positive marginal effects of the 
number and length of visits given these control variables would confirm H4. The pro-
cedure removes the least significant feature from a model including all features until 
there is no further improvement in AIC. Our feature search space includes features rep-
resenting student struggle and disengagement (e.g., the average number and length of 
idleness sequences), student prior knowledge, and whether students were missing on 
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the three days of data collection. We find that the number of teacher visits was signifi-
cantly negatively associated with procedural (β = -0.31, CI95% = [-0.56, -0.06], p = 
.018) and conceptual (β = -0.95, CI95% = [-1.78, -0.12], p = .045) learning gain (see 
Section 2.1 for definitions of these measures). In addition, the total time spent with a 
student was significantly positively associated with conceptual learning gain (β = 1.02, 
CI95% = [0.06, 1.99], p = .038). Overall, this analysis reveals that teacher visits corre-
late with student leaning gains, though not in a straightforward manner. We unpack 
these estimated effects. First, increasing the number of visits while keeping the total 
length of visits constant (i.e., students experiencing more, shorter visits) was associated 
with lower procedural and conceptual learning gain. Second, increasing the total length 
of visits while keeping the number of visits constant (i.e., students experiencing fewer, 
longer visits) was associated with higher conceptual learning gains but not higher pro-
cedural learning gains. In a follow-up interview, the teacher noted that the duration of 
their visits varied and that some students needed short but frequent attention for reas-
surance, while others needed longer assistance on conceptual understanding. Taken to-
gether, while teacher visits exhibited significant associations with student learning, as 
measured by in-tutor performance and out-of-tutor knowledge tests, our hypothesis that 
this association would be uniformly positive was not supported. 

4 Discussion and Conclusion 

In recent years, the AIED community has increasingly focused on developing teacher 
tools and dashboards for AI-enabled classrooms. As we progress in such work on aug-
menting teachers’ practices around AI tutors, it could be highly beneficial to have a 
deeper theoretical and empirical understanding of decisions teachers make in the phys-
ical classroom and their impact on student learning and experience with AI tutors. In 
this paper, we investigate spatiotemporal aspects of student-teacher interactions to bet-
ter understand how teachers support student learning with AI tutors. Our analysis re-
veals that teacher visits were associated more with students’ in-the-moment behavioral 
indicators (e.g., idleness) than with a broader, static measure of student needs such as 
low prior knowledge. While teacher visits were often associated with positive changes 
in student behavior afterward (e.g., decreased idleness), it was not clear that the teacher 
always selected a student who may have needed a visit the most (e.g., sometimes there 
were students who had been disengaged for much longer than the visited student; stu-
dents with high prior knowledge were often visited earlier than low prior knowledge 
students). Furthermore, we find that longer teacher visits were associated with higher 
conceptual learning gain, while frequent visits were associated with lower conceptual 
and procedural learning gain. The latter might represent a selection effect, not an indi-
cation that the teacher’s help was detrimental. Students who have difficulty with the 
material may attract many teacher visits. Therefore, there may be qualitative differences 
between teacher visits that may relate to conceptual and procedural support that calls 
for further scrutiny in future research. Lastly, we also observe differences in after-visit 
patterns between different student groups that potentially are not desirable. Understand-
ing student-level differences in the antecedents and impact of teacher visits remains an 
important topic for future research.  
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The empirical contributions of this study have several implications for the develop-
ment of teacher support for orchestration and reflection. First, the insights derived sug-
gest that it may be useful if future teacher support tools were to present to teachers 
information about how their spatial pedagogical practices in the classroom (and visits, 
specifically) relate to student learning and engagement. Second, our findings also sug-
gest that teacher behavior may not be ideal in some cases (e.g., teachers may have 
missed visiting struggling students), further motivating the need for well-designed tools 
to improve teachers’ awareness and sensemaking [9].  Third, our study provides some 
new forms of analytics that, embedded in teacher tools, could help teachers better pri-
oritize their limited classroom time between conflicting student needs (e.g., analytics 
that help identify students who were disengaged for longer). Fourth, the quantitative 
conceptualization of teacher practices opens up new possibilities for teaching analytics 
focused on helping teachers reflect on their own practices to make pedagogical im-
provements. As a preliminary illustration of that idea, while reflecting on a visualiza-
tion of their visits, the teacher from the current case study said in one of the follow-up 
interviews, “Look at [student's name], I barely stopped by him, and he’s the kid who is 
struggling, but I was hardly there. So, I want to check in on him a little bit more often.” 
They were referring to a student who was seated at the back of the classroom. Such 
reflections led the teacher to imagine concrete classroom enactments, such as potential 
changes to the seating arrangement to have better visibility to students who may misuse 
the system, to have a peer tutor in close proximity to struggling students, and to group 
multiple struggling students to provide conceptual intervention. 

In addition, there are several methodological implications of the current study for 
AIED research. First, combining data sources from the physical and virtual spaces en-
ables an integrated, temporal analysis of student behaviors in the AI tutor and student-
teacher behaviors in the classroom. Such analyses are necessary if we aim to improve 
our understanding of teachers' roles and practices in supporting students’ learning with 
AI tutors. Second, the current study demonstrates the feasibility of collecting and ana-
lyzing such data in an automated way. To the best of our knowledge, the current study 
is the first to collect fine-grained, time-synchronized data on teacher position and log 
data of student-tutor interaction in an AI-enabled classroom in an automated way. Un-
like other automated approaches like videos used in previous studies to quantify stu-
dent-teacher interactions [17], position sensing is less intrusive, preserves student pri-
vacy, has a lower risk of unintended surveillance [4], and requires lower post-pro-
cessing [18] to generate position coordinates. Third, we demonstrate how an existing 
algorithm (stop detection; [8]) could be extended to quantitatively conceptualize a 
teaching construct of interest (visit) in a K12 classroom. 

The study has several limitations that point to interesting opportunities for future 
work. First, our analysis revealed differences in the nature of visits (e.g., infrequent 
long visits versus frequent short visits).  While we explored visit length in this study, 
future research needs to further contextualize teacher visits, for example, by encoding 
their content (e.g., help-giving, socioemotional support, reassurance). Second, the 
quantitative definition of teacher visits in this paper does not capture student-teacher 
interactions happening without physical proximity and may misattribute instances 
when a teacher stands near one student but talks to another, or observes the class, or 
does nothing. Third, our exploratory analysis doesn’t consider other factors in an eco-
logical setting like a classroom that may play a role (e.g., students seeking help by 
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raising their hand, students getting help from a peer). Lastly, this is a case study with 
one teacher and limited time. The findings need to be tested broadly for generalizability. 

Our findings confirm that teachers play an important role in AI-enabled classrooms, 
but also that they are limited in their abilities to perceive and prioritize all student needs 
in real-time. We have seen that tools designed to improve teachers’ awareness and 
sensemaking of students’ learning with AI tutors lead to better student learning [9]. Our 
results inform future design of teacher support tools that intentionally bring out the best 
of teacher abilities and overcome some of their limitations.  
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